Vancouver Lake Watershed Partnership
December 16, 2009

Serves as a tool for selecting studies to inform management decisions

#### **Identifies**

- 1) key research
- 2) critical paths
- 3) associated costs



#### **Research Areas Identified**

Water Dynamics

**Nutrients** 

Sediment

Food Web

**Toxic Contaminants** 

Fish, Wildlife, and Habitat

Lake Water Quality Model

### **Water Dynamics**

| Water Dynamics Studies                  |                                                                                                     |  |
|-----------------------------------------|-----------------------------------------------------------------------------------------------------|--|
| Study task                              | Description                                                                                         |  |
| Task 1.1: Physical Bathymetry           | Mapped by Corps                                                                                     |  |
| Task 1.2:<br>1-D Model                  | Completed by Corps. Boundary conditions?                                                            |  |
| Task 1.3:<br>2-D Model                  | Completed by Corps. Boundary conditions?                                                            |  |
| Task 1.4:<br>Collect Water Balance Data | <ol> <li>Precipitation</li> <li>Evaporation</li> <li>Groundwater</li> <li>Surface Waters</li> </ol> |  |

#### **Nutrients**

| Nutrient Budget Studies               |                                                                                                                                                                                                                                        |
|---------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Study task                            | Description                                                                                                                                                                                                                            |
| Task 2.1:<br>Analyze Existing Data    | What's already known? Conduct data gap assessment.                                                                                                                                                                                     |
| Task 2.2:<br>Nutrient Budget Study    | Collect water chemistry data in the lake and at major inputs and outputs to the system.                                                                                                                                                |
| Task 2.3: Data Analysis and Reporting | <ol> <li>Identify main inputs/outputs of phosphorus and nitrogen.</li> <li>Describe in-lake recycling of nutrients.</li> <li>Evaluate relationships between lake chemistry and plankton populations evaluated for Task 4.1.</li> </ol> |

#### **Sediment**

| Sedimentation Rate Studies                                       |                                                                                                                                                                                                                                                                                |
|------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Study task                                                       | Description                                                                                                                                                                                                                                                                    |
| Task 3.1:<br>Analyze Existing Data                               | What's already known?                                                                                                                                                                                                                                                          |
| Task 3.2:<br>Conduct Sediment Studies                            | a: Sediment traps: sedimentation rate. (USGS) b: Conduct surface sediment grabs to: 1) estimate sediment suspension from wind; 2) measure release of phosphorus from sediments; 3) estimate the pool of available phosphorus. c: Tributary input of suspended sediments.       |
| Task 3.3:<br>Evaluate Mechanisms of<br>Internal Phosphorus Input | a: Physical: Phosphorus release from sediment resuspension by wind.  b: Chemical/Microbial: Sediment phosphorus release by chemical dissolution and microbial decay.  c: Biological: Internal phosphorus input from decaying plants, bio-turbation, waterfowl (Task 6 tie-in). |
| Task 3.4:<br>Investigate Lake History                            | Sediment cores to look at:  Changes in water quality/cyanobacteria composition over the past century  Relationship of lake changes to changes upstream in the watershed  Sediment accumulation rates.                                                                          |

#### **Food Web**

| Food Web Interactions               |                                                                                                                                                                  |
|-------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Study task                          | Description                                                                                                                                                      |
| Task 4.1:<br>Study Planktonic       | (1) determine the abundance, distribution, composition of plankton                                                                                               |
| Assemblages                         | (2) Investigate factors (grazers, temperature) influencing blooms                                                                                                |
|                                     | (3) Look for spatial/temporal patterns and trends in abundance.                                                                                                  |
| Task 4.2: Determine Rate Processes  | Determine rate processes—the growth and death rates of cyanobacteria — and effects of nutrient concentrations.                                                   |
| Task 4.3:<br>Broader Food Web Study | Link lower levels of the lake's food web to higher trophic levels, such as fishes (Task 6.4), as well as to the benthic community of invertebrates (Task 6.2.b). |

#### **Toxic Contaminants**

| Toxic Contaminants Studies                              |                                                                    |
|---------------------------------------------------------|--------------------------------------------------------------------|
| Study task                                              | Description                                                        |
| Task 5.1:<br>Analyze Existing Data.                     | Summarize existing toxics data. Identify data gaps.                |
| Task 5.2: Identify Additional Toxic Contaminant Studies | If data gaps identified, determine necessary supplemental studies. |

### Fish, Wildlife, and Habitat

| Fish, Wildlife, and Habitat Investigations |                                                                                                                                                                 |
|--------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Study task                                 | Description                                                                                                                                                     |
| Task 6.1:<br>Analyze Existing Data.        | What's already known?.                                                                                                                                          |
| Task 6.2:<br>Aquatic Species Survey        | a: Aquatic plants: nutrient uptake/inputs. b: Benthic invertebrates. c: Habitat conditions for lake critters. d: Waterfowl population surveys (tie in Task 2.3) |
| Task 6.3:<br>Fish Community Study          | Who's where and at what time of year?  Fish gut analysis (who's eating what?)                                                                                   |
| Task 6.4:<br>Salmonid Genetic Study        | Identify origins of salmon using the lake at various life stages. (Vancouver Lake's role in larger ecosystem.)                                                  |

### Lake Water Quality Model

| Lake Water Quality Model                 |                                                                                                                     |
|------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| Study task                               | Description                                                                                                         |
| Task 7.1:<br>Water Quality Model         | Review models available/data needs for predicting effectiveness of management options.                              |
|                                          | Select appropriate model for Vancouver Lake.                                                                        |
| Task 7.2: Develop Hydrodynamic Component | Develop hydrodynamic component model based on water dynamic studies (Tasks 1.1 – 1.3)                               |
| Task 7.3: Develop Quality Model          | Develop, calibrate, and run the Vancouver Lake Water Quality Model for two years of data collected for Tasks 1 – 6. |
| Task 7.4: Evaluate Management Options    | Use model to evaluate effectiveness of various management options.  Watershed model?                                |

